redis


redis 基础

01 | 基本架构:一个键值数据库包含什么?

  • SimpleKV和Redis的对比: 【数据结构】上缺乏广泛的数据结构支持:比如支持范围查询的SkipList,和Stream等等数据结构 【高可用】上缺乏,哨兵或者master-slaver模式的高可用设计 【横向扩展】上缺乏集群和分片功能 【在内存安全性】上,缺乏内存过载时候的key淘汰算法的支持 【内存利用率】没有充分对数据结构优化提高内存利用率,例如使用压缩性的数据结构 【功能扩展】需要具备后续功能的拓展 【不具备事务性】无法保证多个操作的原子性 等等

作者回复: 赞,系统性的对比非常详细!我再补一个,内存分配器,SimpleKV就是glibc,Redis的分配器选择更多。

02 | 数据结构:快速的Redis有哪些慢操作?

  • 这里有一个重要的表现:它接收到一个键值对操作后,能以微秒级别的速度找到数据,并快速完成操作。
  • 为啥 Redis 能有这么突出的表现呢?一方面,这是因为它是内存数据库,所有操作都在内存上完成,内存的访问速度本身就很快。另一方面,这要归功于它的数据结构。这是因为,键值对是按一定的数据结构来组织的,操作键值对最终就是对数据结构进行增删改查操作,所以高效的数据结构是 Redis 快速处理数据的基础。这节课,我就来和你聊聊数据结构。
  • 不就是 String(字符串)、List(列表)、Hash(哈希)、Set(集合)和 Sorted Set(有序集合)吗?”其实,这些只是 Redis 键值对中值的数据类型,也就是数据的保存形式。而这里,我们说的数据结构,是要去看看它们的底层实现。
  • img
  • img
  • 如果你只是了解了哈希表的 O(1) 复杂度和快速查找特性,那么,当你往 Redis 中写入大量数据后,就可能发现操作有时候会突然变慢了。这其实是因为你忽略了一个潜在的风险点,那就是哈希表的冲突问题和 rehash 可能带来的操作阻塞。
  • Redis 解决哈希冲突的方式,就是链式哈希。链式哈希也很容易理解,就是指同一个哈希桶中的多个元素用一个链表来保存,它们之间依次用指针连接。
  • 为了使 rehash 操作更高效,Redis 默认使用了两个全局哈希表:哈希表 1 和哈希表 2。一开始,当你刚插入数据时,默认使用哈希表 1,此时的哈希表 2 并没有被分配空间。随着数据逐步增多,Redis 开始执行 rehash,这个过程分为三步:给哈希表 2 分配更大的空间,例如是当前哈希表 1 大小的两倍;把哈希表 1 中的数据重新映射并拷贝到哈希表 2 中;释放哈希表 1 的空间。到此,我们就可以从哈希表 1 切换到哈希表 2,用增大的哈希表 2 保存更多数据,而原来的哈希表 1 留作下一次 rehash 扩容备用。这个过程看似简单,但是第二步涉及大量的数据拷贝,如果一次性把哈希表 1 中的数据都迁移完,会造成 Redis 线程阻塞,无法服务其他请求。此时,Redis 就无法快速访问数据了。Redis 仍然正常处理客户端请求,每处理一个请求时,从哈希表 1 中的第一个索引位置开始,顺带着将这个索引位置上的所有 entries 拷贝到哈希表 2 中;等处理下一个请求时,再顺带拷贝哈希表 1 中的下一个索引位置的 entries。

03 | 高性能IO模型:为什么单线程Redis能那么快?

  • Redis 是单线程,主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。

  • 我们就要深入地学习下 Redis 的单线程设计机制以及多路复用机制。之后你在调优 Redis 性能时,也能更有针对性地避免会导致 Redis 单线程阻塞的操作,例如执行复杂度高的命令。

  • 只是简单地采用一个粗粒度互斥锁,就会出现不理想的结果:即使增加了线程,大部分线程也在等待获取访问共享资源的互斥锁,并行变串行,系统吞吐率并没有随着线程的增加而增加。

  • 一方面,Redis 的大部分操作在内存上完成,再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因。另一方面,就是 Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率。接下来,我们就重点学习下多路复用机制。

  • 多路复用机制

    • 当 Redis 监听到一个客户端有连接请求,但一直未能成功建立起连接时,会阻塞在 accept() 函数这里,导致其他客户端无法和 Redis 建立连接。类似的,当 Redis 通过 recv() 从一个客户端读取数据时,如果数据一直没有到达,Redis 也会一直阻塞在 recv()。这就导致 Redis 整个线程阻塞,无法处理其他客户端请求,效率很低。不过,幸运的是,socket 网络模型本身支持非阻塞模式。
    • 针对监听套接字,我们可以设置非阻塞模式:当 Redis 调用 accept() 但一直未有连接请求到达时,Redis 线程可以返回处理其他操作,而不用一直等待。但是,你要注意的是,调用 accept() 时,已经存在监听套接字了。虽然 Redis 线程可以不用继续等待,但是总得有机制继续在监听套接字上等待后续连接请求,并在有请求时通知 Redis。类似的,我们也可以针对已连接套接字设置非阻塞模式:Redis 调用 recv() 后,如果已连接套接字上一直没有数据到达,Redis 线程同样可以返回处理其他操作。我们也需要有机制继续监听该已连接套接字,并在有数据达到时通知 Redis。
    • 在 socket 模型中,不同操作调用后会返回不同的套接字类型。socket() 方法会返回主动套接字,然后调用 listen() 方法,将主动套接字转化为监听套接字,此时,可以监听来自客户端的连接请求。最后,调用 accept() 方法接收到达的客户端连接,并返回已连接套接字。
    • Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。
    • 图中的多个 FD 就是刚才所说的多个套接字。Redis 网络框架调用 epoll 机制,让内核监听这些套接字。此时,Redis 线程不会阻塞在某一个特定的监听或已连接套接字上,也就是说,不会阻塞在某一个特定的客户端请求处理上。正因为此,Redis 可以同时和多个客户端连接并处理请求,从而提升并发性。
    • 这些事件会被放进一个事件队列,Redis 单线程对该事件队列不断进行处理。这样一来,Redis 无需一直轮询是否有请求实际发生,这就可以避免造成 CPU 资源浪费。同时,Redis 在对事件队列中的事件进行处理时,会调用相应的处理函数,这就实现了基于事件的回调。因为 Redis 一直在对事件队列进行处理,所以能及时响应客户端请求,提升 Redis 的响应性能。
    • 关键点在于accpet和recv时可能会阻塞线程,使用IO多路复用技术可以让线程先处理其他事情,等需要的资源到位后epoll会调用回调函数通知线程,然后线程再去处理存/取数据;这样一个redis服务端线程就可以同时处理多个客户端请求了。 redis之所以适合用多路复用技术有一个很重要的原因时它是在内存中处理数据速度极快,这时io成了瓶颈。为什么Mysql不用多路复用技术呢?因为Mysql的主要性能瓶颈在于数据的存/取,优化方向不一样。

04 | AOF日志:宕机了,Redis如何避免数据丢失?

  • 不过,AOF 也有两个潜在的风险。首先,如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复,但是,如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。其次,AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。
  • “同步写回”可以做到基本不丢数据,但是它在每一个写命令后都有一个慢速的落盘操作,不可避免地会影响主线程性能;虽然“操作系统控制的写回”在写完缓冲区后,就可以继续执行后续的命令,但是落盘的时机已经不在 Redis 手中了,只要 AOF 记录没有写回磁盘,一旦宕机对应的数据就丢失了;“每秒写回”采用一秒写回一次的频率,避免了“同步写回”的性能开销,虽然减少了对系统性能的影响,但是如果发生宕机,上一秒内未落盘的命令操作仍然会丢失。所以,这只能算是,在避免影响主线程性能和避免数据丢失两者间取了个折中。
  • 为什么重写机制可以把日志文件变小呢? 实际上,重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。我们知道,AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键值对的写入了。img

  • “一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。“两处日志”又是什么呢?因为主线程未阻塞,仍然可以处理新来的操作。此时,如果有写操作,第一处日志就是指正在使用的 AOF 日志,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。而第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我们就可以用新的 AOF 文件替代旧文件了。
  • 我向你介绍了 Redis 用于避免数据丢失的 AOF 方法。这个方法通过逐一记录操作命令,在恢复时再逐一执行命令的方式,保证了数据的可靠性。这个方法看似“简单”,但也是充分考虑了对 Redis 性能的影响。总结来说,它提供了 AOF 日志的三种写回策略,分别是 Always、Everysec 和 No,这三种策略在可靠性上是从高到低,而在性能上则是从低到高。此外,为了避免日志文件过大,Redis 还提供了 AOF 重写机制,直接根据数据库里数据的最新状态,生成这些数据的插入命令,作为新日志。这个过程通过后台线程完成,避免了对主线程的阻塞。其中,三种写回策略体现了系统设计中的一个重要原则 ,即 trade-off,或者称为“取舍”,指的就是在性能和可靠性保证之间做取舍。我认为,这是做系统设计和开发的一个关键哲学,我也非常希望,你能充分地理解这个原则,并在日常开发中加以应用。不过,你可能也注意到了,落盘时机和重写机制都是在“记日志”这一过程中发挥作用的。例如,落盘时机的选择可以避免记日志时阻塞主线程,重写可以避免日志文件过大。但是,在“用日志”的过程中,也就是使用 AOF 进行故障恢复时,我们仍然需要把所有的操作记录都运行一遍。再加上 Redis 的单线程设计,这些命令操作只能一条一条按顺序执行,这个“重放”的过程就会很慢了。
  • 有没有既能避免数据丢失,又能更快地恢复的方法呢?当然有,那就是 RDB 快照了。

05 | 内存快照:宕机后,Redis如何实现快速恢复?

  • 和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作
  • 对于 Redis 而言,它的单线程模型就决定了,我们要尽量避免所有会阻塞主线程的操作,所以,针对任何操作,我们都会提一个灵魂之问:“它会阻塞主线程吗?”RDB 文件的生成是否会阻塞主线程,这就关系到是否会降低 Redis 的性能。
  • Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave。save:在主线程中执行,会导致阻塞;bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。好了,这个时候,我们就可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。
  • 避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。
  • 避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。为了快照而暂停写操作,肯定是不能接受的。所以这个时候,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作。
  • bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。
  • 如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。
  • 如果频繁地执行全量快照,也会带来两方面的开销。一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环。另一方面,bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长。如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了。那么,有什么其他好方法吗?
  • 此时,我们可以做增量快照,所谓增量快照
  • Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。
  • Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,这就类似于给 100 个人拍合影,把每一个人都拍进照片里。这样做的好处是,一次性记录了所有数据,一个都不少。

06 | 数据同步:主从库如何实现数据一致?

  • Redis 具有高可靠性,又是什么意思呢?其实,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增加副本冗余量,将一份数据同时保存在多个实例上。即使有一个实例出现了故障,需要过一段时间才能恢复,其他实例也可以对外提供服务,不会影响业务使用。

  • Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。读操作:主库、从库都可以接收;写操作:首先到主库执行,然后,主库将写操作同步给从库。

  • 现在有实例 1(ip:172.16.19.3)和实例 2(ip:172.16.19.5),我们在实例 2 上执行以下这个命令后,实例 2 就变成了实例 1 的从库,并从实例 1 上复制数据:replicaof 172.16.19.3 6379

  • img

  • 一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。

  • 当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。

  • 因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。

  • 主从全量同步使用RDB而不使用AOF的原因:

    1、RDB文件内容是经过压缩的二进制数据(不同数据类型数据做了针对性优化),文件很小。而AOF文件记录的是每一次写操作的命令,写操作越多文件会变得很大,其中还包括很多对同一个key的多次冗余操作。在主从全量数据同步时,传输RDB文件可以尽量降低对主库机器网络带宽的消耗,从库在加载RDB文件时,一是文件小,读取整个文件的速度会很快,二是因为RDB文件存储的都是二进制数据,从库直接按照RDB协议解析还原数据即可,速度会非常快,而AOF需要依次重放每个写命令,这个过程会经历冗长的处理逻辑,恢复速度相比RDB会慢得多,所以使用RDB进行主从全量同步的成本最低。

    2、假设要使用AOF做全量同步,意味着必须打开AOF功能,打开AOF就要选择文件刷盘的策略,选择不当会严重影响Redis性能。而RDB只有在需要定时备份和主从全量同步数据时才会触发生成一次快照。而在很多丢失数据不敏感的业务场景,其实是不需要开启AOF的。

07 | 哨兵机制:主库挂了,如何不间断服务?

  • 主库真的挂了吗?该选择哪个从库作为主库?怎么把新主库的相关信息通知给从库和客户端呢?这就要提到哨兵机制了。在 Redis 主从集群中,哨兵机制是实现主从库自动切换的关键机制,它有效地解决了主从复制模式下故障转移的这三个问题。
  • 哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。
  • 你可以执行如下命令,来订阅“所有实例进入客观下线状态的事件”:SUBSCRIBE +odown
  • 你也可以执行如下命令,订阅所有的事件:PSUBSCRIBE *
  • 当哨兵把新主库选择出来后,客户端就会看到下面的 switch-master 事件。这个事件表示主库已经切换了,新主库的 IP 地址和端口信息已经有了。这个时候,客户端就可以用这里面的新主库地址和端口进行通信了。switch-master
  • 通常,我们在解决一个系统问题的时候,会引入一个新机制,或者设计一层新功能,就像我们在这两节课学习的内容:为了实现主从切换,我们引入了哨兵;为了避免单个哨兵故障后无法进行主从切换,以及为了减少误判率,又引入了哨兵集群;哨兵集群又需要有一些机制来支撑它的正常运行。这节课上,我就向你介绍了支持哨兵集群的这些关键机制,包括:基于 pub/sub 机制的哨兵集群组成过程;基于 INFO 命令的从库列表,这可以帮助哨兵和从库建立连接;基于哨兵自身的 pub/sub 功能,这实现了客户端和哨兵之间的事件通知。对于主从切换,当然不是哪个哨兵想执行就可以执行的,否则就乱套了。所以,这就需要哨兵集群在判断了主库“客观下线”后,经过投票仲裁,选举一个 Leader 出来,由它负责实际的主从切换,即由它来完成新主库的选择以及通知从库与客户端。最后,我想再给你分享一个经验:要保证所有哨兵实例的配置是一致的,尤其是主观下线的判断值 down-after-milliseconds。
  • 哨兵Leader切换主从库的机制:(感谢 @Kaito ,@Darren 大神的解答) 哨兵成为Leader的必要条件:a:获得半数以上的票数,b:得到的票数要达到配置的quorum阀值 主从切换只能由Leader执行,而成为Leader有两个必要的条件,所以当哨兵集群中实例异常过多时,会导致主从库无法切换

08 | 哨兵集群:哨兵挂了,主从库还能切换吗?

09 | 切片集群:数据增多了,是该加内存还是加实例?

  • 如何保存更多数据?在刚刚的案例里,为了保存大量数据,我们使用了大内存云主机和切片集群两种方法。实际上,这两种方法分别对应着 Redis 应对数据量增多的两种方案:纵向扩展(scale up)和横向扩展(scale out)。
  • 第一个问题是,当使用 RDB 对数据进行持久化时,如果数据量增加,需要的内存也会增加,主线程 fork 子进程时就可能会阻塞(比如刚刚的例子中的情况)。不过,如果你不要求持久化保存 Redis 数据,那么,纵向扩展会是一个不错的选择。不过,这时,你还要面对第二个问题:纵向扩展会受到硬件和成本的限制。这很容易理解,毕竟,把内存从 32GB 扩展到 64GB 还算容易,但是,要想扩充到 1TB,就会面临硬件容量和成本上的限制了。
  • 数据切片后,在多个实例之间如何分布?客户端怎么确定想要访问的数据在哪个实例上?
  • 切片集群和 Redis Cluster 的联系与区别。实际上,切片集群是一种保存大量数据的通用机制,这个机制可以有不同的实现方案。在 Redis 3.0 之前,官方并没有针对切片集群提供具体的方案。从 3.0 开始,官方提供了一个名为 Redis Cluster 的方案,用于实现切片集群。Redis Cluster 方案中就规定了数据和实例的对应规则。
  • Redis Cluster 方案采用哈希槽(Hash Slot,接下来我会直接称之为 Slot),来处理数据和实例之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384 个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中。
  • 在手动分配哈希槽时,需要把 16384 个槽都分配完,否则 Redis 集群无法正常工作。

10 | 第1~9讲课后思考题答案及常见问题答疑

11 | “万金油”的String,为什么不好用了?

  • 以前,我们认为 String 是“万金油”,什么场合都适用,但是,在保存的键值对本身占用的内存空间不大时(例如这节课里提到的的图片 ID 和图片存储对象 ID),String 类型的元数据开销就占据主导了,这里面包括了 RedisObject 结构、SDS 结构 Simple Dynamic String,SDS、dictEntry 结构(dictEntry 结构中有三个 8 字节的指针,分别指向 key、value 以及下一个 dictEntry)的内存开销。dictEntry - 指向 redisObject,redisObject指向 SDS。
  • img

12 | 有一亿个keys要统计,应该用哪种集合?

  • 我就给你介绍集合类型常见的四种统计模式,包括聚合统计、排序统计、二值状态统计和基数统计
  • 聚合统计
    • Set 的差集、并集和交集的计算复杂度较高,在数据量较大的情况下,如果直接执行这些计算,会导致 Redis 实例阻塞。所以,我给你分享一个小建议:你可以从主从集群中选择一个从库,让它专门负责聚合计算,或者是把数据读取到客户端,在客户端来完成聚合统计,这样就可以规避阻塞主库实例和其他从库实例的风险了。
  • ‘排序统计
    • 在 Redis 常用的 4 个集合类型中(List、Hash、Set、Sorted Set),List 和 Sorted Set 就属于有序集合。

13 | GEO是什么?还可以定义新的数据类型吗?

14 | 如何在Redis中保存时间序列数据?

15 | 消息队列的考验:Redis有哪些解决方案?

16 | 异步机制:如何避免单线程模型的阻塞?

17 | 为什么CPU结构也会影响Redis的性能?

18 | 波动的响应延迟:如何应对变慢的Redis?(上)

19 | 波动的响应延迟:如何应对变慢的Redis?(下)

20 | 删除数据后,为什么内存占用率还是很高?

21 | 缓冲区:一个可能引发“惨案”的地方

22 | 第11~21讲课后思考题答案及常见问题答疑

23 | 旁路缓存:Redis是如何工作的?

24 | 替换策略:缓存满了怎么办?

25 | 缓存异常(上):如何解决缓存和数据库的数据不一致问题?

26 | 缓存异常(下):如何解决缓存雪崩、击穿、穿透难题?

27 | 缓存被污染了,该怎么办?

28 | Pika:如何基于SSD实现大容量Redis?

29 | 无锁的原子操作:Redis如何应对并发访问?

30 | 如何使用Redis实现分布式锁?

31 | 事务机制:Redis能实现ACID属性吗?

32 | Redis主从同步与故障切换,有哪些坑?

33 | 脑裂:一次奇怪的数据丢失

34 | 第23~33讲课后思考题答案及常见问题答疑

35 | Codis VS Redis Cluster:我该选择哪一个集群方案?

36 | Redis支撑秒杀场景的关键技术和实践都有哪些?

37 | 数据分布优化:如何应对数据倾斜?

38 | 通信开销:限制Redis Cluster规模的关键因素+